Атомы отдачи - определение. Что такое Атомы отдачи
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Атомы отдачи - определение

Энергия диссоциации молекулы на атомы
  • date=2018-03-12}}
</ref>
Найдено результатов: 25
Атомы отдачи      

атомы, получившие определённый импульс, а следовательно, и энергию в результате ядерных реакций. Каждое ядерное превращение сопровождается выделением энергии, которая распределяется между ядром, образующимся в результате ядерного превращения, и испускаемой частицей в соответствии с законом сохранения импульса (количества движения). Образовавшиеся быстро движущиеся атомы называются А. о., по аналогии этого явления с отдачей при выстреле. Иногда кинетическая энергия, приобретённая А. о., во много раз превосходит энергию химической связи этих атомов с другими атомами соединения. Такие А. о. (см. "Горячие" атомы (См. Горячие атомы)) способны выходить из молекул соединения, в котором они первоначально находились, образовывать новые соединения, переходить из твёрдых тел в газовую фазу и т. д. Это явление используется для обогащения радиоактивных изотопов, получающихся при ядерных реакциях, при собирании продуктов деления тяжёлых ядер и т. д. См. также Силарда - Чалмерса эффект.

накатник         
  • затвором]]; в — [[дульный тормоз]]; г — противооткатные устройства; д — [[щитовое прикрытие]]; е — колёсный ход; ж — [[станины]]
  • 280-мм мортира образца 1939 года (Бр-5)
  • Работа дульного компенсатора
  • Схематичное изображение противооткатных устройств
  • Противооткатные устройства. ([[60 pounder]])
  • thumb
  • Гидропневматический амортизатор
  • thumb
  • Гидравлический амортизатор
м.
Тонкие бревна, употребляемые для настила полов, крыш, мостов и т.п.
Противооткатные устройства         
  • затвором]]; в — [[дульный тормоз]]; г — противооткатные устройства; д — [[щитовое прикрытие]]; е — колёсный ход; ж — [[станины]]
  • 280-мм мортира образца 1939 года (Бр-5)
  • Работа дульного компенсатора
  • Схематичное изображение противооткатных устройств
  • Противооткатные устройства. ([[60 pounder]])
  • thumb
  • Гидропневматический амортизатор
  • thumb
  • Гидравлический амортизатор
Противооткатные устройства — устройства, предназначенные для смягчения ударных нагрузок на лафет орудия при отдаче, превращающие механическую энергию в тепловую и служащие для поглощения толчков и ударов.
накатник         
  • затвором]]; в — [[дульный тормоз]]; г — противооткатные устройства; д — [[щитовое прикрытие]]; е — колёсный ход; ж — [[станины]]
  • 280-мм мортира образца 1939 года (Бр-5)
  • Работа дульного компенсатора
  • Схематичное изображение противооткатных устройств
  • Противооткатные устройства. ([[60 pounder]])
  • thumb
  • Гидропневматический амортизатор
  • thumb
  • Гидравлический амортизатор
НАК'АТНИК, накатника, ·муж. (спец.).
1. То же, что накат
во 2 ·знач.
2. То же, что накатка
во 2 ·знач.
Полусвободный затвор         
  • Оригинальная система Кирали. Рычаг-ускоритель также используется в роли курка, ударяющего по бойку после прихода затворной рамы в крайне переднее положение.
  • пистолете-пулемёте Томпсона]], было основано на повышенном трении, возникающем между бронзовым вкладышем затвора в виде буквы Н и наклонными пазами в стенках ствольной коробки, в которые входили его боковые отростки.
  • Устройство пистолета-пулемёта JaTiMatic. Изображение из оригинального патента Яли Тимари.
  • Затвор штурмовой винтовки FAMAS.
  • Изображение системы [[ПП MDG]] с маховичным торможением отхода затвора.
  • Схема работы автоматики HK P7.<br>'''I''' — положение перед выстрелом; '''II, III''' — в процессе выстрела высокое давление в цилиндре не позволяет затвору двигаться назад; '''IV''' — пуля покинула ствол, давление в стволе и в цилиндре упало, затвор открывается под действием импульса отдачи.
  • Чертёж из патента Педерсена.
  • Устройство ПП Рейзинга. Затвор в крайне переднем положении, перекошен вверх.
  • Автоматика HK G3 и HK MP5 использует полусвободный затвор с торможением вертикальными роликами.
  • Устройство SIG MKMS.
  • Устройство пистолета-пулемёта [[TDI Vector]].
  • Затвор Блиша
  • Автоматика HK G3 и HK MP5, использующая полусвободный затвор с торможением вертикальными роликами, также основана на перераспределении энергии между двумя частями затвора.
Полусвободный затвор, или торможённый затвор — продольно-скользящий затвор, не сцепленный с неподвижным стволом во время выстрела, отход которого назад при выстреле замедляется за счёт особого его устройства.
ЭНЕРГИЯ СВЯЗИ         
разность между энергией связанной системы частиц и суммарной энергией этих частиц в свободном состоянии. Для устойчивых систем энергия связи отрицательна и тем больше по абсолютной величине, чем прочнее система. Энергия связи с обратным знаком равна минимальной работе, которую нужно затратить, чтобы разделить систему на составляющие ее частицы.
Энергия связи         
Эне́ргия свя́зи (для данного состояния системы) — разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в состоянии активного покоя, и полной энергией связанного состояния системы:
Энергия связи         

энергия связанной системы каких-либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные друг от друга и не взаимодействующие между собой составляющие ее частицы. Является отрицательной величиной, т. к. при образовании связанного состояния энергия выделяется; ее абсолютная величина характеризует прочность связи (например, устойчивость ядер). Согласно соотношению Эйнштейна, Э. с. эквивалентна дефекту масс (См. Дефект масс) Δm: ΔЕ = Δmc2 (с - скорость света в вакууме). Значение Э. с. определяется типом взаимодействия частиц в данной системе. Так, Э. с. ядра обусловлена сильными взаимодействиями (См. Сильные взаимодействия) нуклонов в ядре (у наиболее устойчивых ядер промежуточных атомов она Энергия связи8•106 эв на 1 нуклон - удельная Э. с.). Она может выделяться при слиянии легких ядер в более тяжелые (см. Термоядерные реакции), а также при делении тяжелых ядер, что объясняется уменьшением удельной Э. с. (см. Ядерные реакции) с ростом атомного номера.

Э. с. электронов в атоме или молекуле определяется электромагнитными взаимодействиями (См. Электромагнитные взаимодействия) и пропорциональна для каждого электрона ионизационному потенциалу (См. Ионизационный потенциал), для электрона атома и в нормальном состоянии она равна 13,6 эв. Этими же взаимодействиями обусловлена

Э. с. атомов в молекуле и кристалле (см. Химическая связь). Э. с. при гравитационном взаимодействии обычно мала, но для некоторых космических объектов ее величина может быть значительной (см., например, "Черная дыра" (См. Чёрная дыра)).

Меченые атомы         
ХИМИЧЕСКОЕ СОЕДИНЕНИЕ
Изотопные индикаторы; Индикаторы изотопные; Радиоактивная метка; Метод меченных атомов; Метод меченых атомов; Изотопные метки
Меченые атомы (изотопные индикаторы) — изотопы, по своим свойствам (радиоактивности, атомной массе) отличающиеся от других изотопов данного элемента, которые добавляют к химическому соединению или смеси, где находится исследуемый элемент. Поведение меченых атомов характеризует поведение элемента в исследуемом процессе Рачинский В.
ИЗОТОПНЫЕ ИНДИКАТОРЫ         
ХИМИЧЕСКОЕ СОЕДИНЕНИЕ
Изотопные индикаторы; Индикаторы изотопные; Радиоактивная метка; Метод меченных атомов; Метод меченых атомов; Изотопные метки
(меченые атомы) , радиоактивные (реже стабильные) нуклиды, которые используются в составе простых или сложных веществ для изучения химического, биологического и других процессов с помощью специальных методов (напр., масс-спектрометрия, радиометрия).

Википедия

Энергия связи

Эне́ргия свя́зи (для данного состояния системы) — разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в состоянии активного покоя, и полной энергией связанного состояния системы:

Δ E = i = 1 N E i E , {\displaystyle \Delta E=\sum _{i=1}^{N}E_{i}-E,}

где Δ E {\displaystyle \Delta E}  — энергия связи компонентов в системе из N компонентов (частиц), E i {\displaystyle E_{i}}  — полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и E {\displaystyle E}  — полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц, энергию связи принято считать равной нулю, то есть при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы. Она характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов — со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации, которая составляет порядка сотен кДж/моль.

Удельная энергия связи, то есть изменение энергии системы при добавлении одной частицы, называется химическим потенциалом. Для системы, состоящей из нескольких видов частиц существует несколько химических потенциалов по числу видов частиц.

Энергия связи адронов атомного ядра определяется в основном сильным взаимодействием. Для большинства ядер она составляет ~8 МэВ на нуклон.

Что такое <font color="red">А</font>томы отд<font color="red">а</font>чи - определение